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The progress of the nuclear spectroscopy technique
is substantially specified by the creation of nuclear
radiation semiconductor detectors (SCDs) [1, 2], in
particular, silicon detectors based on Si(Li) р–i–n
structures having relatively small sizes (with a sensi�
tive�surface diameter d < 50 mm and thickness W =
1.5–2 mm) [3–5]. However, up�to�date requirements
imposed on these detectors lead to the necessity of
increasing their sizes up to d > 50–100 mm and W >
2 mm. In this case, physical, technological, and struc�
tural decisions should take the properties of the initial
large�size crystal into account in an attempt to meet
optimum electrical, radiometric, and spectrometric
characteristics of the detectors [6–9].

In this study, special features of the production
technology of the high�performance nuclear radiation
semiconductor detectors having large sizes (d > 50 mm
and W = 1.5–4 mm) and based on αSi�Si(Li) amor�
phous silicon–silicon heterostructures are considered.
A special feature of this heterostructure is a high and
sharp (relative to the diffusion Si(Li) p–n junction)
potential barrier of the heterocontact. This is impor�
tant for ensuring in SCDs a thin entrance window
(“dead layer”) and optimum electrophysical and spec�
trometric characteristics.

1

The αSi�Si(Li) heterostructures were formed on р�
type single�crystal silicon wafers with a 50�mm diameter
and thickness of ≥2 mm. The specific resistance of the
initial crystal varied in the range ρ = 1000–5000 Ω · cm,
when the lifetime of nonequilibrium current carriers
τ ≥ 300 μs. After a number of mechano–chemical
treatments of crystals, the lithium ion diffusion was
carried out in vacuum at a depth of ~300 μm at a tem�
perature of 450°C. The diffusion depth was monitored
by the sphere–section method.

After etching with a polishing etch in an
HF:HNO3:CH3COOH mixture of acids and in aniline
etch, the reverse currents of the samples were ≤10 μA.
Further, the lithium�ion drift process was performed
first at T = 70–80°С and voltage U = 100–400 V and
then at Т = 60°С and U = 200 V. The additional low�
temperature drift process contributed to equalizing the
degree of compensation over the entire crystal volume.

After completion of all lithium�ion drift processes,
the diffusion region was completely ground away, and
α�Si (the layer thickness was ~500 Å) was sputtered on
this surface from the completely removed i�region
(lithium�compensated silicon). Gold and aluminum
coatings were used to obtain ohmic metallic contacts:
(i) the aluminum coating on the sensitive surface of
the structure with an α�Si layer (on which ionizing
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Fig. 1. Design of the αSi–Si(Li)�based detector: (a) detector, view from above; (b) general appearance of the detector; (1) single�
crystal silicon, compensated by the lithium�ion drift method; (2) amorphous layer; (3) aluminum contact; and (4) gold contact.
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radiation falls) and (ii) the gold coating on the oppo�
site side (Fig. 1).

The detectors obtained by this procedure had the
following parameters. When the reverse bias voltage
Urev ~ 20–300 V, the dark current was equal to ~0.5–
1.2 μA, the capacitance value was ~40–200 pF, and
the energy noise Ens ~ 25–60 keV.

The energy resolution was measured using sources
of 226Ra α particles and 207Bi β particles. The ampli�
tude spectra were recorded using a standard spectro�
metric section. Figure 2 shows the energy spectra of
the detector for 226Ra α particles (Еα = 7.65 MeV) –
Rα = 65 keV and for 207Bi β particles (internal�conver�
sion electrons) (Еβ = 1 MeV) – Rβ = 38 keV. As it can
be seen from the energy spectra, for the SCD based on
αSi�Si(Li) heterostructures in the case of α particles,
the influence of the thickness of the amorphous silicon
layer on the energy spectrum formation is insignifi�
cant, since the absorption depth of α particles is very
small (0.25 μm). In the case of β particles, the influ�
ence of the thickness of the amorphous silicon layer is
not also great, but, in this case, the influence of the
degree of compensation of the thickness of the sensi�
tive silicon region on the formation of the β�particle
energy spectrum shows itself, since the absorption
depth of β particles reaches 2 mm. As a result, the
SCD energy resolution for α particles is Rα < 1% and
for β particles Rβ ≥ 1% and is determined by the half�
width of the particle energy spectrum.

The obtained results showed that the nuclear radi�
ation detectors based on αSi�Si(Li) heterostructures
are more efficient by 0.5–1.5% in respect to electrical

(current, capacitive), radiometric (noise, dead layer
thickness), and spectrometric (energy resolution,
amplitude spectrum formation) characteristics as
compared to traditional Si(Li) p–i–n detectors.
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Fig. 2. Energy spectra of the αSi�Si(Li): а heterostructure: (a) for 226Ra particles (Еα = 7.65 MeV); and (b) for 207Bi particles
(Еβ = 1 MeV).
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